A depresszió szűrésében is áttörést hozhat a mesterséges intelligencia

A depresszió szűrésében is áttörést hozhat a mesterséges intelligencia

Beszédelemzésen alapuló, a depresszió felismerését segítő nyelvfüggetlen szoftvert fejlesztenek közösen a Budapesti Műszaki és Gazdaságtudományi Egyetem és a Semmelweis Egyetem szakemberei.

A depresszió napjainkban egyre inkább népbetegségnek számít. Az Egészségügyi Világszervezet (WHO) adatai alapján globálisan körülbelül 280 millió ember, a felnőtt lakosság 5 százaléka lehet érintett. Egyes előrejelzések szerint 2030-ra ez a mentális probléma róhatja a legnagyobb terhet a világ egészségügyi és gazdasági rendszereire.

A tünetek sokszínűsége, a mentális problémák körüli stigma és az egészségügyet világszinten érintő humánerőforrás-gondok miatt a betegséget nehéz és időigényes diagnosztizálni. Nem meglepő, hogy az elmúlt hónapokban egyre nagyobb figyelmet kapó mesterséges intelligencia is helyet kap a szakterülettel kapcsolatos legújabb kutatásokban. 

A depresszió-kutatásban éppen ezért régóta próbálnak olyan biomarkereket (objektíven mérhető jellemzők) meghatározni, melyek orvosi beavatkozás nélkül segíthetik a gyorsabb felismerést. Ilyen lehet a páciensek megváltozott beszéde, melyről mára gyakorlatilag egyetértés van a szakirodalomban – ismertette Hajduska-Dér Bálint, a Semmelweis Egyetem Pszichiátriai és Pszichoterápiás Klinikájának tanársegédje ��s egy, a Frontiers in Psychiatry című folyóiratban nemrég megjelent tanulmány első szerzője.

A publikációban egy Budapesti Műszaki és Gazdaságtudományi Egyetemen (BME) fejlesztett, mesterséges intelligencia alapú beszédhang-feldolgozó alkalmazás működését analizálták, mellyel a depresszió felismerését egyszerűsítenék.

A depressziós betegek beszéde általában megváltozik: monotonabb és halkabb lesz, többször tartanak szünetet. Ezeket a jellegzetességeket tanítjuk meg a szoftvernek egy speciális módszer (Support Vector Regression) segítségével – egészítette ki Kiss Gábor, a BME Távközlési és Médiainformatikai Tanszékének tudományos munkatársa.

A szóban forgó, a szűrésben nagy segítséget nyújtó alkalmazást 2012-ben kezdték el fejleszteni, miután a BME bekapcsolódott az Európai Űrügynökség egyik kutatásába, melyben a déli-sarki Concordia Űrkutató Állomáson dolgozók pszichés állapotát mérték fel. Mivel az ottani szakemberek sokszor bezárva, nehezen megközelíthető helyen dolgoznak, miközben télen a nappalok is nagyon rövidek, az általuk rendszeresen felolvasott rövid szövegek alapján a beszédükből próbálták meg kiszűrni pszichés állapotuk változásait. Ebből a projektből nőtte ki magát a Semmelweis Egyetem és a BME együttműködése.

Legutóbbi tanulmányukban arra keresték a választ, hogy a szoftver melyik hagyományosan használt diagnosztikai módszerből nyert adatokkal szűri ki nagyobb pontossággal a depressziót. A betegség felismerésére jelenleg leggyakrabban vagy az úgynevezett Beck Depression Inventory (BDI) vagy a Hamilton Rating Scale for Depression (HAMD) teszteket használják, melyek nem teljesen objektívek.

A BDI teszt önkitöltős, ezért sok múlik azon, hogy maga a páciens hogyan értékeli a saját állapotát: túlozhat vagy éppen elbagatellizálhat tüneteket. Ezzel diagnosztizálni viszont gyorsabb, és nem kíván feltétlenül orvosi jelenlétet. A HAMD tesztet ezzel szemben az orvos tölti ki a beteg jelenlétében, így olyan tüneteket is megfigyelhet, amit a páciens esetleg nem tart fontosnak – azonban ez egy időigényesebb folyamat.

A kutatáshoz az úgynevezett Magyar Depressziós Beszéd Adatbázis 218 depressziós és egészséges embertől (144 nő, 74 férfi) származó hangmintáit használták fel. A résztvevőknek „Az északi szél és a nap” című rövid, 10-mondatos mesét kellett felolvasniuk. A szakemberek rögzítették a BDI teszten elért pontszámukat, életkorukat, nemüket, dohányzási- és gyógyszerszedési szokásaikat, illetve, hogy van-e beszédet befolyásoló betegségük. A résztvevők 20 százalékánál (43) a HAMD teszten elért pontszámukat is felvették.

A kutatók ezután különböző fizikai jellemzőket vetettek össze minden egyes beszédmintában, köztük a hangspektrumot, a hangdinamikát, a dallamváltozást vagy a beszédritmust.

Az összesített eredményekből kiderült, hogy az alkalmazás 84 százalékos pontossággal szűrte ki a depressziós betegeket, ha a klinikusok által kitöltött HAMD-teszt pontszámokkal tanították a szoftvert, és 76 százalékos pontossággal mért, ha az önkitöltős BDI-teszt pontszámait vették figyelembe.

Az eredményeink azt mutatják, hogy az akusztikus biomarkerek segítségével a depresszió hamarabb felismerhető, és egy automatizált döntéshozó szoftver széles körben is használható lenne, mint kiegészítő diagnosztikai eszköz. Nemcsak az általános orvosi praxisban, de akár könnyen és olcsón elérhető mobil- vagy webes applikációk formájában is – mutatta be Kiss Gábor.

Hajduska-Dér Bálint arra is kitért, hogy a depresszió beszédhangon alapuló korai felismerésével lerövidíthető és felgyorsítható lenne a betegút. Az érintettek hamarabb juthatnának el pszichiáterhez, ha mondjuk már a háziorvosnál felmerülne, hogy a beteg esetleg depressziós, és emiatt lehetnek fizikai tünetei, például has- vagy hátfájdalma.

A mesterséges intelligencia bevonása ezért közvetve az életminőség javulására is hatással lehet, illetve a kórházban töltött időt és az ellátásra fordított költségeket is csökkenthetné, ezzel tehermentesítve az egészségügyi rendszert – emelte ki a szakember.

Az applikáció a betegek állapotának után-követesére és a különböző terápiák hatásosságának mérésére is alkalmas.

A BME-én már tesztelik az alkalmazást más nyelveken is, és szeretnének egy teljesen nyelvfüggetlen applikációt létrehozni. A szoftver egyébként nemcsak depresszió, hanem Parkinson-kór és diszfónia (száj- és gégedaganat vagy egyéb funkcionális rendellenesség) szűrésére is alkalmas.

A WHO által publikált adatok alapján évente 700 000-nél is többen követnek el öngyilkosságot globálisan, emiatt a szakemberek szerint a depresszió korai felismerése egyre inkább kulcsfontosságú terület lesz.

Ötből négy napot erősödéssel fejezett be a Budapesti Értéktőzsde részvényindexe. A BUX a héten csúcsot is döntött, végül pénteken visszafelé korrigálással zárt. A vezető részvények a Telekom kivételével erősödtek.